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1 Abstract

A realistic simulator of complex gas phase systems needs to handle accurately processes
spanning different scales of space and time. The paper outlines the key theoretical and
computational features of modern a priori treatments of the dynamics of elementary
processes in these systems with particular emphasis on reactive processes.

2 Introduction

Realistic a priori simulations of rarefied gas flows are conceptually articulated into various
blocks of operations characterized by different time and space scales (1). These blocks
are concerned with the calculation of electronic structures, molecular collisions, collec-
tive (fluid-, electro-, etc.) dynamics and the averaging over randomly sampled variables
to work out a priori estimates of observed and measurable properties of real situations
(like the formation of shock waves in rarefied gas flows). As a matter of fact, these are
the pillars on which the COST Chemistry Metalaboratory SIMBEX has developed the
homonymous simulator of molecular beam experiments (1; 2) and the COMPCHEM (3)
virtual organization (VO) 1 has assembled the Grid Enabled Molecular Simulator (GEMS)
proposed for European funding as a specific targeted research project within the Activity
IST-2005-2.5.6 Research Network Testbed of the 6th Framework Program (4).

The mentioned blocks of computations are carried out using separate suites of codes
thanks to the fact that time and space scales associated with them are profoundly dif-
ferent. This means that the electronic energy of the molecular systems and the related
wavefunctions can be calculated to a high level of accuracy from first principles using ab

initio techniques within the Born-Oppenheimer (BO) (5) approximation (provided that,
when necessary, at certain times of the process or at certain arrangements of the nuclei in
the corresponding stationary scheme, the coupling between nuclear and electronic degrees
of freedom is regained). In the BO approximation the electronic motion is assumed to
depend only parametrically on the nuclear coordinates and the potential energy (elec-
tronic energy plus nuclear repulsions) of the nuclear motion is calculated (at several fixed
geometries of the nuclei) using well consolidated quantum chemistry suites of programs
(see for example refs. (6; 7; 8; 9; 10)) which will not be discussed here. The ab initio

calculation of the electronic energy can be performed either time by time at the actual
geometry of the moving system (on-the-fly) or, once for ever, at the first step of the com-
putational procedure. In the latter case, ab initio calculations are performed for a large
matrix of nuclear geometries (including those of the initial and final states of the consid-
ered process) and calculated values are then best-fitted by optimizing the parameters of
a suitable potential energy functional.

The integration of the motion equations of the nuclei on the adopted potential energy
surface (PES) allows to estimate the efficiency parameters of the elementary chemical
processes being considered. These detailed efficiency parameters (with their temperature,
energy, spatial, angular momentum, etc. dependencies) are the key set of input data
needed to carry out realistic simulations of the kinetic regime of real gaseous systems.

In this paper we shall discus on:

1COMPCHEM is registered at grid-it.cnaf.infn.it.
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1. the development of few atom rigorous dynamical methods (section 2);

2. the extension of dynamical methods to larger systems (section 3);

3. the exploitation of the potentialities of advanced computing for Molecular Sciences
calculations (section 4).

3 The a priori dynamical approach

From a theoretical point of view elementary chemical processes are many body problems
concerning the encounter of two or more aggregates of electrons and nuclei. This allows to
treat the molecules as deformable objects which can collide and break into parts and/or
recombine. Simultaneous encounters of three or more objects are quite unlikely to oc-
cur (especially in the low pressure gas phase processes mentioned before). Accordingly,
most of the theoretical and computational studies have focused on two body encounters
(bi-molecular). After all, the treatment of multi-molecular encounters are usually ratio-
nalized by chaining relevant bi-molecular collisions (though, recently, they are increasingly
dealt directly using classical molecular dynamics). For uni-molecular processes too the
theoretical approach can be easily reconducted to that of half a bi-molecular encounter.

Typical efficiency parameters of elementary bi-molecular processes are either (thermal,
state-specific and state-to-state) rate coefficients or integral (state-specific and state-to-
state) cross sections. The thermal rate coefficient k(T ) is formulated as (11)

k(T ) =
∑

i

∑

f

wi exp [−ǫi/kBT ]

Qint(T )
ki,f(T ) (1)

where i and f are respectively the initial and final internal states, wi is the multi-
plicity of the initial internal state i including the nuclear spin symmetry, Qint(T ) =
∑

i wi exp [−ǫi/kBT ] is the partition function associated with the initial internal states,
kB is the Boltzmann constant, ǫi is the energy of state i, ki,f(T ) is the state-to-state rate
coefficient and T is the temperature of the system. The evaluation of the state-to-state
rate coefficient can be reconducted to the calculation of the state-to-state cross section
σi,f(Etr) using the following equation

ki,f(T ) =

(

8

πµk3

BT
3

)1/2 ∫

∞

0

Etrσi,f (Etr)e
−Etr/kBT dEtr (2)

if the energy distribution is of the Boltzmann type with µ being the reduced mass of the
system in its reactant arrangement and Etr the translational energy. The state-to-state
cross section (σi,f (Etr)) can be calculated from the state-to-state cumulative reaction
probability (Pi,f(Etr)) as follows

σi,f(Etr) =
π

k2
i

Pi,f(Etr) =
π

k2
i

∞
∑

J=0

(2J + 1)P J
i,f(Etr) =

π

k2
i

∞
∑

J=0

(2J + 1)
J

∑

Λ=−J

P JΛ

i,f (Etr) (3)

where ki is the system wavenumber and the individual terms P JΛ

i,f (Etr) of the right hand
side member of expression 3 can be derived from the square modulus of the S matrix
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elements calculated at a given pair of total angular momentum quantum number J and
helicity quantum number Λ.

3.1 Electronically adiabatic potential energy surfaces

As already mentioned, a priori calculations of state-specific and state-to-state probabil-
ities of elementary chemical processes start from the consideration that the fixed nuclei
electronic wavefunctions Φe({w}; {W}) are a suitable basis set for the expansion of the
system wavefunction Z ({w}, {W}, t) (in our notation {w} and {W} are the sets of elec-
tronic and nuclear position vectors, respectively, and t is time). The fixed nuclei electronic
wavefunctions Φe({w}; {W}) are the eigensolutions of the fixed nuclei electronic problem

Ĥe ({w}; {W}) Φe({w}; {W}) = E({W})Φe({w}; {W}) (4)

where Ĥe is the time independent electronic Hamiltonian. The solution of eq. 4 provides
us with the desired set of Ith adiabatic electronic eigenvalues EI({W}) for the molecular
geometry and electronic wavefunction associated with it. The ensemble of the EI({W})
values, once summed to the corresponding nuclear repulsion, represent a pointwise de-
scription of the PES (VI({W}) on which the motion of the Nnucl nuclei of the system
takes place.

This gives us a means for solving the general time dependent Schrödinger equation of
the system (12; 13)

i~
∂

∂t
Z ({w}, {W}, t) = Ĥ({w}, {W})Z ({w}, {W}, t) (5)

(in eq. 5 Ĥ = Ĥe+ĤN is the total many body Hamiltonian of the system whith ĤN being
its nuclear component) by expanding Z, as already mentioned, in terms of the electronic
eigenfunctions which parametrically depend on the position vectors of the nuclei as follows

Z ({w}, {W}, t) =
∑

I

ΨI ({W}, t)Φe
I ({w}; {W}) . (6)

After averaging over the electronic coordinates, the resulting differential equations
for the ΨI ({W}, t) coefficients of the expansion contain some terms coupling nuclear
and electronic degrees of freedom. As already mentioned, the BO decoupling scheme is
usually applied at this point by assuming these terms to be negligible. As a result, for
each electronic state I (hereafter, the index I will be dropped from the formalism because
we shall confine our attention to the single electronically adiabiatic PES BO regime) the
calculations reduce to the following electronically adiabatic time dependent Schrödinger
equation (12; 13; 14)

i~
∂

∂t
Ψ ({W}, t) = ĤN({W})Ψ ({W}, t) =

[

T̂N ({W}) + V ({W})
]

Ψ ({W}, t) (7)

where T̂N({W}) is the nuclear kinetic operator.
In regions where the BO approximation breaks down, as is the case of closely spaced

electronic eigenvalues, ad hoc treatments can be adopted which deal at the same time
with different terms of the electronic functions manifolds (15). In these approaches the
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elements coupling electronic and nuclear degrees of freedom are evaluated consistently us-
ing information coming from electronic structure calculations. Then resulting differential
equations coupling different electronic states and wavefunctions are integrated using the
same standard numerical algorithms available to integrate equations 7.

The crucial starting phase of the calculation of cross sections and rate coefficients is
therefore the assemblage of a suitable PES. This task is most often highly demanding in
terms of computing time and chemical ingenuity. For this reason the calculation of the
potential energy values is increasingly tackled at an on-the-fly ab initio level. Yet, up to
date, the most popular approaches are those based on a two step procedure. The first
step consists of the collection of all the available (both ab initio and empirical) local or
global data on the system interaction while the second step consists of their fitting using
an appropriate functional form.

For small systems (Nnucl < 10), as is the case of the majority of the elementary reac-
tions considered up to date for theoretical dynamical studies (in some cases this is true
also for larger systems if the complexity of the computational procedure is reduced by
imposing suitable dynamical constraints), the above mentioned two step procedure is,
indeed, the preferred one. The reason for this preference is the fact that the quality of
present electronic structure calculations is often insufficient to guarantee an accurate re-
production of the interaction of the system over the full range of internuclear distances
unless calculated ab initio values are adjusted using empirical considerations before un-
dertaking the fitting. The functional representation to be used for fitting the PES of
reactive systems is more difficult to formulate and most of the computations have been
confined to systems made of three and four atoms (16; 17; 18; 19; 20).

The most popular functional forms used for this purpose are polynomials either in
physical coordinates (17) (like the internuclear distances defined as rij = |Wi − Wj|) or
in bond order variables (21) (defined as exponentials of the displacement from equilibrium
of the related internuclear distances). When using physical coordinates the polynomials
need to be damped to avoid divergence at long range. Polynomial functionals are usually
adopted within a Many Body Expansion approach to formulate the individual compo-
nents of the expansion. Other simple functional forms are either derived from drastically
simplified formulations of ab initio methods (22; 23) or from intuitive models (such as
diatomic rotating potentials (24; 25)). Alternative approaches make use of local inter-
polation methods in which for each interval low order polynomials are employed and the
value of related parameters are determined by imposing pointwise or switching continuity
conditions. Similar approaches are also used for multi-surface treatments by fitting each
surface using a functional form (except for methods directly providing multiple solutions).

When moving to complex systems it becomes more convenient to compose the PES
by summing simple few body functions (stretches, bends, torsions, van der Waals, non-
bonded interactions, etc) containing empirically determined parameters (force fields) (26).
Parameters used by these approaches are transferable within the same family of systems.
Usually these surfaces are scarcely suited to describe the making or breaking of bonds
while they are better suited for conformational studies.
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3.2 Quantum formalism for few body reactions

Quantum techniques based on the integration of eq. (7) are widely used to evaluate the
observable properties of reactive elementary processes. This task is, nowadays, a largely
routine work when dealing with atom diatom systems. From the integration of eq. (7)
one can evaluate the elements of the scattering matrix S whose square moduli are the
elements of the probability matrix P used in eq. 3.

For a few body isolated system (as is the case of laser free crossed molecular beam
experiments) the motion of the center of mass of the system can be factored out to reduce
the dimensionality of the problem (to six spatial coordinates in the atom diatom case
that is the simplest prototype of elementary reactions) without introducing additional
approximations.

Accordingly, for a three atom (A, B, C) system, the time dependent Schrödinger
equation for the nuclei reads as

i~
∂

∂t
Ψ(Rτ , rτ , t) =

[

−
~

2

2µ
(∇2

Rτ
+ ∇2

rτ
) + V (Rτ , rτ ,Θτ )

]

Ψ(Rτ , rτ , t) (8)

where Rτ and rτ are the mass scaled atom-diatom Jacobi vectors (of modulus Rτ and
rτ ), Θτ is the angle formed by Rτ and rτ and Ψ(Rτ , rτ , t) is the time dependent nuclear
wavefunction. As usual, Jacobi coordinates are labeled after the arrangement τ (τ = 1, 2
and 3 means A + BC, B + CA and C + BA respectively) to which they refer.

The dimensionality of the problem is further reduced if the Laplacian (the kinetic
component of the Hamiltonian) is written in terms of angular momentum operators

−
~

2

2µ
(∇2

Rτ
+ ∇2

rτ
) = −

~
2

2µ

(

1

Rτ

∂2

∂R2
τ

Rτ +
1

rτ

∂2

∂r2
τ

rτ

)

+
(Ĵ − ĵτ )

2

2µR2
τ

+
ĵ2
τ

2µr2
τ

(9)

with Ĵ being the total angular momentum operator given by the sum of ĵτ and l̂τ (the
rotational and the orbital angular momentum operators of the system, respectively). This
makes it convenient to express the Ψ(Rτ , rτ , t) wavefunction in terms of products of the
ΨJMp(Rτ , rτ ,Θτ , t) partial waves (which are eigenfunctions of the eigenvalue J(J+1) of the
total angular momentum operator Ĵ2, of its projection M on a space fixed (SF) reference
axis and of the parity p) in the internal coordinates Rτ , rτ and Θτ , and the appropriate
spherical harmonics. For computational convenience to integrate the scattering equations
from the reactant to the product arrangement one can also adopt a body fixed (BF)
representation (in which the reference frame is allowed to rotate in order to have the z
axis always aligned with the Rτ vector and the xz plane having a fixed orientation with
respect to the molecular plane) where Λ is the projection of the total angular momentum
Ĵ on the BF z axis.

3.2.1 Time independent approaches

To further reduce the dimensionality of the problem (this was the approach usually
adopted in the past) the time variable can be factored out from the system wavefunc-
tion and a time independent formulation of the Schrödinger equation can be obtained
without introducing additional approximations (this means that the system can be de-
scribed by a stationary wave) (27). To integrate the stationary Schrödinger equation one
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needs to define a particular coordinate (usually called reaction coordinate) by properly
combining the internuclear distances or Jacobi coordinates to ensure a smooth switch
from reactant oriented to product oriented arrangement coordinates.

The most popular reaction coordinate adopted in recent studies has been the hyper-
radius ρ defined as ρ2 = R2

τ + r2
τ (this relationship holds for all arrangements because ρ

is invariant under kinematic rotations). The hyperradius together with two hyperangles
constitutes the set of hyperspherical coordinates. These coordinates can be defined in
various ways depending on what arrangement is to be preferred. Here, for illustrative
purposes, we make use of their APH (28) (democratic) version in which the hyperangles
are θ and χ (the value of χ depends on the choice of the reference geometry though
for simplicity the related label is dropped here from the notation) and the partial wave
equations take the form

[

T̂ρ + T̂h + T̂r + T̂c + V (ρ, θ, χ)
]

ΨJMp(ρ, θ, χ) = EΨJMp(ρ, θ, χ) (10)

where subscripts “h”, “r” and “c” stand for “hypersphere”, “rotational,” and “Coriolis”,
respectively and the operators T̂ρ, T̂h, T̂r and T̂c are formulated as:

T̂ρ = −
~

2

2µρ5

∂

∂ρ
ρ5
∂

∂ρ
,

T̂h = −
~

2

2µρ2

(

4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2 θ

∂2

∂χ2

)

,

T̂r = A(ρ, θ)J2

x +B(ρ, θ)J2

y + C(ρ, θ)J2

z ,

and

T̂c = −
i~ cos θ

µρ2 sin2 θ
Jy

∂

∂χ
,

with A(ρ, θ), B(ρ, θ) and C(ρ, θ) being defined as A−1(ρ, θ) = µρ2(1 + sin θ), B−1(ρ, θ) =
2µρ2 sin2 θ, C−1(ρ, θ) = µρ2(1 − sin θ).

Eq. (10) is integrated by segmenting the hyperradius in several sectors and expanding
Ψ (within each sector i) in terms of the ΦJp

tΛ surface functions which are eigensolutions of
the following equation

[

T̂h +
15~

2

8µρ2
i

+ (C −D) ~
2Λ2 +D~

2J(J + 1) + V (ρi, θ, χ) − εJp
tΛ(ρi)

]

ΦJp
tΛ(θ, χ; ρi) = 0

(11)
with D = (A + B)/2 (though the Φ functions could be chosen also to be independent of
J by setting J = 0 in eq. 11 and regaining the J dependence during the integration over
ρ). Once the expansion is performed one gets the following set of equations to integrate
over the hyperradius ρ
[

∂2

∂ρ2
+

2µE

~2

]

ψJpn
tΛ (ρi) =

2µ

~2

∑

t′Λ′

< ΦJp
tΛ(θ, χ; ρi)D̂

Jp
ΛM |Ĥi|Φ

Jp
t′Λ′(θ, χ; ρi)D̂

Jp
Λ′M ′ > ψJpn

tΛ (ρi)

(12)
where the internal Hamiltonian Ĥi is defined as

Ĥi = T̂h + T̂r + T̂c +
15~

2

8µρ2
+ V (ρ, θ, χ). (13)
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Accordingly, the computational procedure can be partitioned into three parts. Part
one is devoted to the calculation of the Φ functions over suitable fixed ρ grid points of θ and
χ values. This part is dominated by the evaluation of (two dimensional for three atom, five
dimensional for four atom systems) integral quadratures and eigenvalues finding of large
real dense square matrices. The second part of the calculation consists in propagating
the ψJpn

tΛ (ρi) solutions. This part of the calculation is dominated by the inversion of large
matrices having the same dimension as the number of channels. The third part is less
computationally demanding and is devoted to the mapping of the asymptotic solution
into the proper arrangement space and to the imposition of boundary conditions to work
out the S matrix.

Moving from three to four atom systems (say diatom-diatom) the number of internal
coordinates doubles. A possible choice is the set of coordinates R, r1, r2, Θ1, Θ2 and φ
with R being the distance between the centers of mass of the two diatoms, r1 and r2 being
the two diatomic internuclear distances, Θ1 and Θ2 being the two planar angles formed
by r1 and r2 with R and φ being the dihedral angle formed by the (R, r1) and (R, r2)
planes. Using these coordinates the Hamiltonian of the AB + CD system takes the form
(29)

ĤN = −
~

2

2µ4

∂2

∂R2
+ ĥ1(r1) + ĥ2(r2) +

(Ĵ − ĵ12)
2

2µ4R2
+

ĵ2
1

2µ1r2
1

+
ĵ2
2

2µ2r2
2

+ ∆V (14)

where µ4 is the reduced mass of the AB and CD reduced masses (µ1 and µ2, respectively),
Ĵ is, as already mentioned, the total angular momentum operator, ĵ12 is the sum of ĵ1
and ĵ2 which are the rotational angular momentum operators of AB and CD, respectively,
ĥ1(r1) and ĥ2(r2) are the vibrational Hamiltonians of AB and CD, respectively, while ∆
V is the difference between the total interaction potential V (R, r1, r2,Θ1,Θ2, φ) and the
V (r1) and V (r2) vibrational potentials of ĥ1(r1) and ĥ2(r2).

The increased complexity of the four atom Hamiltonian makes the definition of the
reaction coordinate, the calculation of the sector basis functins and the switch from one
arrangement to another (and therefore the solution of the time independent Schrödinger
equation) very difficult. As a matter of fact, only recently significant advances have been
made in describing the reaction coordinate of four atom systems by using row-orthonormal
hyperspherical democratic coordinates made of a hyperradius and five hyperangles (30).

3.2.2 Time dependent approaches

The difficulty of handling the problem associated with the definition of a suitable smoothly
evolving spatial continuity variable brings the discussion back to the decision of reduc-
ing the dimensionality of the calculation by factoring out the time dependence of the
wavefunction. In this respect the simplicity obtained in formulating the computational
machinery when using the Jacobi coordinate time dependent formalism is increasingly
considered a suitable reward for keeping the extra variable of time in the formalism. As a
matter of fact, in time dependent approaches one has the advantage of straightforwardly
shaping the initial wavepacket. This is, in fact, chosen to correspond to a given reac-
tant state or to a mixture of them, its component along the atom diatom coordinate R
is formulated as a product of a gaussian wave (exp [−α(R− Ro)

2]) times a phase shift
factor (exp [−iko(R− Ro)]) associated with its inward traveling nature having an average
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momentum ko~. Then the wavepacket can be mapped into any other set of arrangement
coordinates of interest and let propagate in time by repeatedly applying the evolution

operator exp
[

−iĤτ/~
]

. Eventually, after the wavepacket has spread all over the whole

accessible configuration space one can carry out its analysis at the product asymptotic
line by expanding the cut of the wavefunction into the related diatomic wavefunctions
(for atom-diatom systems). The time dependent coefficients of the expansion Cv′j′Λ′(t)
read (31)

Cv′j′Λ′(t) =

∫

r

∫

Θ

sin ΘPΛ

j (Θ)φv′j′(r)Ψ
JΛ(R = R∞, r,Θ, t)dΘdr (15)

when using the reactant Jacobi coordinates R, r and Θ (primed variables are for products,
unprimed for reactants). In eq. (15) PΛ

j (Θ) is the normalized associated Legendre function
of the angular part of the wavefunction. By performing a half Fourier transform of the
Cv′j′Λ′(t) coefficients one gets the time independent (energy dependent) A matrix whose
elements read

Av′j′Λ′(E) =
1

2π

∫

∞

t=0

exp (iEt/~) · Cv′j′Λ′(t)dt. (16)

From them one can easily determine the S matrix elements whose square modulus (the
probabilities) allow to calculate the atom-diatom cross section (31)

σvj,v′j′(Etr) =
π

k2
vj(2j + 1)

∑

J

(2J + 1)
∑

p=±1

∑

Λ,Λ′

∣

∣SJ
vjΛ,v′j′Λ′

∣

∣

2
. (17)

3.2.3 Direct calculations of Reactions rate coefficients

The simplicity of the time dependent method has also facilitated its extension to larger
systems (29; 32). However, when one is interested in evaluating the (less detailed) thermal
rate coefficient there is no need to carry out in the computation all the details embodied
in the S-matrix. After all, the value of the rate coefficient is rather insensitive to the
detailed structure of the whole PES while it is strongly dependent on the shape of the
reactant side of the saddle and in particular on the height and the width of the reaction
barrier (33).

This has motivated the formulation of the rate coefficient directly in terms of the
cumulative reaction probability N(E) defined as

N(E) =
∑

i

∑

f

Pi,f(E). (18)

and that does not refer to any asymptotic state and depends only on the dynamics of the
system in the vicinity of the reaction barrier. In terms of N(E) the rate coefficient is then
formulated as

k(T ) =
1

hQtr(T )Qint(T )

∫

∞

0

N(E)e−E/kBT dE (19)

where Qtr(T ) is equal to (2πµkBT )3/2 /h3. This means that the efficiency of the reactive
process is expressed in terms of the fraction of the system wavefunction left over after
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projecting out all its components which do not have outgoing character in the product
asymptotic region. The projection operator can be given the form

Pprod = lim
t→∞

eiĤt θ(R− R0) e
−iĤt . (20)

Accordingly, the wavefunction can be propagated forward (out of an arbitrarily located
dividing surface) infinitely in time. Then components not located on the product side of
the dividing surface are projected out and the remaining wavefunction is propagated
backward in time. In this approach, the rate constant k(T ) can be formulated as:

k(T ) =
1

Qtr(T )Qint(T )
lim
t→∞

tr(F̂ e−Ĥ/kBT eiĤt ĥ e−iĤt) (21)

when such a limit exists. In equation 21, ĥ can be chosen to be any operator discriminating
between reactants and products and F̂ any operator measuring the flux from reactants
to products (in Eq. (21) the following correlation function

Cfp(t) = tr(e−
Ĥ

2kT F̂ e−
Ĥ

2kT eiĤt ĥ e−iĤt) (22)

of the flux-position type is used). As an alternative use can be made of the following
correlation function

Cff(t) = tr(e−
Ĥ

2kT F̂ e−
Ĥ

2kT eiĤt F̂ e−iĤt) (23)

of the flux-flux type with Cff (t) being the time derivative of Cfp(t) and F̂ the time

derivative of ĥ in the Heisenberg picture. Accordingly, the thermal rate coefficient takes
the form

k(T ) =
1

Qtr(T )Qint(T )
lim
t→∞

Cfp(t) =
1

Qtr(T )Qint(T )

∞
∫

0

Cff(t)dt (24)

and the cumulative reaction probability becomes (34; 35):

N(E) = 2π2 tr
(

F̂ δ(Ĥ −E) F̂ δ(Ĥ −E)
)

=
1

2
e2E/kBT

∑

fT

∑

f ′

T

fT f
′

T

∣

∣

∣

∣

∫

eiEt < fT

∣

∣

∣
e−iĤt

∣

∣

∣
f ′

T > dt

∣

∣

∣

∣

2

(25)

where the evaluation of the trace (whose detailed calculation would imply the propagation
of the whole set of basis functions) has been obtained in terms of the eigenstates fT of
the thermal flux operator F̂T defined as

F̂T = e−Ĥ/2kBT F̂ e−Ĥ/2kBT (26)

which need only a small number of applications of F̂T on a sample wavefunction.
An interesting analogy between the classical and the quantum description of the rate

coefficient can be obtained if one factorizes the correlation factor into a static and a
dynamic component. The dynamic component provides, in fact, in the t → ∞ limit,
a description of the amount of F̂T eigenstates ending up on the product side of the
dividing surface. Different ways of exploiting these ideas to the end of carrying out the
actual calculations of the value of the thermal rate coefficients and of cumulative reaction
probabilities, are given in refs. (36; 37; 38; 39).
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4 Approximate Methods

The practical impossibility of carrying out exact calculations for more complex systems
has prompted the development of computational procedures based on various decoupling
schemes effective in reducing the dimensionality of the problem.

4.1 Reduced dimensionality quantum methods

The goal of working out approximate formulations of the cross section and of the rate
coefficient was first accomplished for atom diatom systems by introducing decoupling
schemes of the kind energy sudden (40), centrifugal sudden (41) and infinite order sudden
(42). In these decoupling schemes either diatomic rotations or atom diatom orbiting (or
both) are treated in an approximate way. For systems made of four or more atoms the
coupling of the various degrees of freedom, while significantly increasing the complexity
of the dynamical treatment, most often plays a negligible role in determining the reaction
outcome.

This has allowed a split of the dynamical treatment of strongly coupled degrees of
freedom from weakly coupled ones. Strongly interacting degrees of freedom are treated
rigorously while weakly interacting ones are treated approximately. The most popular
approximations are based either on adiabatic assumptions or on the parametrization of
some variables. As an example, in the rotating bond approximation (RBA) of diatom-
diatom non linear collisions, two radial coordinates and one bending angle are explicitly
treated while the other three degrees of freedom are kept frozen (43). The overall result
is then worked out by averaging quantities calculated at the different values of the frozen
variables. In the adiabatic bend approximation (ABA) (44; 45), instead, the three radial
coordinates are treated explicitly while the three bending angles are treated adiabatically.
This means that the overall wavefunction is factored out and eigenvalues associated with
the effect of the terms of the Hamiltonian in the related coordinates are used to obtain
the effective Hamiltonian for the coordinates to be treated exactly.

As already mentioned the calculation of dynamical properties can be performed by
determining the cumulative probability which can be estimated in an approximate way
using a transition state (TS) schematization of the reactive process. In this view the role
played by the overall rotation of the system is that of shifting in energy (of a quantity
Eshift related to the rotational energy of the system at the TS geometry) the reaction
probability P J

i,f(Etr). This approximation, usually called J-shifting (45), links the value of
the state-to-state probability calculated at a given value of the total angular momentum
quantum number J to that calculated at a reference value (Jref). The relationship used
is

P J
vj,v′j′(Etr) = P

Jref

vj,v′j′(Etr −Eshift) (27)

where Eshift is the difference in energy between the overall rotational eigenstates J and
Jref at the transition state and Jref is usually taken equal to zero. A more elaborated
method linearly interpolates P J

i,f(Etr) between the probabilities calculated at the two Jref

values most closely sandwiching the actual J value of the calculation.
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4.2 Mixed quantum and classical mechanics approaches

Approaches alternative to quantum calculations are those based on classical mechanics.
Several of these approaches use classical mechanics formulations to describe slower mo-
tions and quantum mechanics formulations to describe the remaining (faster) degrees
of freedom. Related schemes have been applied to divide electronic from nuclear mo-
tion and to formulate widely general scaling procedures (47; 48). Some of these mixed
quantum-classical approximations have been derived in a rigorous way in refs. (49; 50) by
introducing a specific basis-set of the orthogonal polynomial type centered at a ”classical”
trajectory and expanded around it as the dynamics evolves in time. In this case the forces
appearing in the classical equations of motion are not the usual Newtonian ones but more
general forces usually called ”quantum forces”.

The chosen basis can be used in combination with the usual time independent basis
functions or collocated representations. This allows to work out mixed quantum classical
approaches and to monitor the quantum classical correlation and measure the accuracy
of classical path treatments.

When systems become very large, the computational procedures need to be simplified
further also at the level of the calculation of the electronic energies (in this case, in fact, the
accuracy of the calculated electronic wave function becomes intrinsically poor (51)). As a
result, the choice of election is to combine the use of classical mechanics for treating the
dynamics of the nuclei with the adoption of approximate schemes to calculate electronic
energy (like in density functional approaches (51)) and greatly simplify the on-the-fly (52)
computational machinery.

These Ab-initio Molecular Dynamics simulations are presently (53; 54) applied to
the study of physico-chemical properties, such as reactivity and dynamic relaxation, of
several systems (55). Hybrid procedures linking Quantum-Mechanical parameterized de-
scriptions of the ‘active sites’ of the molecule with a Molecular Mechanics description of its
inactive framework are highly popular. These Quantum Mechanics Molecular Mechanics
(QMMM) treatments (56) show advantages and limitations. They still lead, in fact, to
dynamical results which cannot be inferred by a mere static analysis of the features of
the potential energy surface though they do not treat most of them accurately.

At various stages of a trajectory calculation one has the possibility of treating semiclas-
sically those degrees of freedom for which a classical approach is inadequate by associating
to them a semiclassical wave depending on the classical action accumulated along the clas-
sical path. This allows to regain concepts like flux, interference, resonance and tunneling
within a trajectory framework and reproduce quite closely some quantum features of the
results.

4.3 The pure classical mechanics computational machinery

Purely classical mechanics approaches found the dynamical treatment on the integration
of classical trajectories (CT). For this reason they are called quasiclassical or QCT when
initial and final states are in some way discretized. CT methods assume that the nuclei
involved in a chemical reaction obey classical mechanics and roll as point mass particles on
the potential energy surface of the system. Accordingly, HCT

N (R), the classical analogue
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of the quantum nuclear Hamiltonian HN(R) of eq. (7), reads

HCT
N ({R}) =

Nnucl
∑

k

p2

k,xRk
+ p2

k,yRk
+ p2

k,zRk

2mk

+ V ({R}) (28)

and the evolution of the system is followed by integrating the equations of classical me-
chanics starting from different sets of initial conditions (for atom diatom systems initial
conditions are given by the vibrational number ν, the rotational number j, the transla-
tional energy Etr, the impact parameter b, the elongation of the diatom, the phase of
the rotating diatom, the angles formed by the rotational angular momentum and the
velocity with the molecular plane). Various formulations of the classical particles motion
equations can be given. In the widely used Hamilton’s version they read as

dsRk

dt
=

∂HN

∂psRk

dpsRk

dt
= −

∂HN

∂sRk

for each cartesian projection sRk
(of the position vector Rk) and psRk

(of the momentum
vector pk) of each atom k of mass mk of the molecular system. The equations are inte-
grated starting from one set of allowed initial conditions of the reactants in state i and
are stopped either when the maximum number of interactions steps has been reached or
when an asymptotic geometry of the products has been reached. As already mentioned,
discrete features of quantum results are then enforced in QCT ones by arbitrarily dis-
cretizing the energy of classical bound motions. Usually for atom diatom systems this
means that the counter Nνjν′j′ (associated with trajectories starting from νj and ending
with a classical vibrotational energy closer to that of the ν ′j′ state than to any other one)
is incremented by a unit. When all planned Ntj trajectories are integrated Pνj,ν′j′ is set
equal to Nνj,ν′j′/Ntj and σνj,ν′j′ is set equal to πbmaxPνj,ν′j′ (with bmax being the maximum
value used for the impact parameter). CT and QCT approaches can often provide esti-
mates of rate coefficients, cross sections, angular distributions and reaction probabilities
of reasonable accuracy. Moreover, they allow a pictorial view of the mechanisms governing
chemical reactions. Obviously, the CT method is an approximation to the nuclear motion
and it becomes more accurate when quantum effects are negligible (as is the case of heavy
nuclei, large collision energies and highly averaged reactive properties).

5 Advanced Computing

As it has been already mentioned, the demand for computer resources prompted by chem-
ical reactivity calculations and related realistic a priori simulations is as high as that of
other grand challenges of modern computational science. To guarantee the computational
feasibility of these applications one has to resort to the exploitation of the innovative
features of parallel and distributed computers by decomposing the problem in simpler
decoupled subproblems and distributing the resulting independent blocks of the codes
for execution on a large quantity of processing elements. The application of some de-
compositions based on physical considerations (like separating the electronic structure
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calculation, factorizing the time variable, disentangling the center of mass motion and
performing a partial wave expansion) have been already discussed before. However, when
dealing with large systems and complex applications one has to effectively exploit the in-
novative features of parallel and distributed computing by carrying out a decomposition
of the problem at an algorithmic level.

5.1 Parallel computing

To effectively tackle the problem of parallel restructuring a computational application the
following aspects need to be specifically considered (57; 58; 59)

1. the key algorithms need to be optimized for parallel execution,

2. existing software modules need to be integrated efficiently,

3. different programming models and languages need to be used at various levels,

4. retrieving and storing of data structures need to be reorganized and streamed,

5. performances of the adopted articulation need to be measured under different con-
ditions for its improvement.

This particularly difficult and time consuming job is usually carried out by reorganizing
the relevant suites of codes and by inserting the appropriate directives and commands
chosen among those of the most popular parallelization libraries (60). However, the need
for ensuring both reliability and standardization on one side and the difficulty of keeping
the pace of the continuous evolution of architectures and simulation techniques on the
other side have made it necessary to produce tools guaranteeing the automatic or semi-
automatic portability of applications (also in the sense of performance portability) across
computing platforms.

Significant progress along this direction has been made using structured environments.
A typical structured environment useful for a semi-automatic parallelization of the appli-
cations is SKIE (61). SKIE is an integrated environment providing a new application ori-
ented set of instruments allowing the rapid development and prototyping of applications.
Such an environment is based on some optimized and ready-to-use parallel structures,
called skeletons. The skeletons can embody sections of codes allowing so far an extended
reuse of the existing sequential (written in the most popular high level sequential lan-
guages) or parallel programs by encapsulating them in modules. Examples of skeletons
are processor farms (a pool of worker processes computes a pool of independent tasks);
pipelines, (different processes carry out in a sequence the various phases of the computa-
tion); map data-parallel computations (all the elements of a data structure are updated
or computed at the same time). These structures are handled using a coordination lan-
guage (CL) called SKIE-CL and can be utilized to coordinate and connect any sequential
or parallel module encapsulated using a SKIE-CL wrapper. The wrapper ensures that
parameter passing and data representation are consistent among the modules composing
a parallel application. SKIE-CL makes use of instruments like control, stream parallel

and data parallel though it accepts also in the input and output parameter lists all the
usual basic types of variables (integers, real, etc), records, and multi-dimensional arrays.
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In addition, SKIE-CL provides a stream data type which allows programmers to generate
or consume sequences of items of indefinite length. The peculiar feature of these patterns
is the fact that they can be freely composed ”a la carte” to build complex structures.

SKIE automatically generates also an optimized implementation of the skeleton com-
position. This means that when using a SKIE skeleton the support not only generates
automatically the code needed for parallel interaction, but it also optimizes the resources
allocated to each skeleton, decides the best granularity of computation and locates ineffi-
ciencies in the global structure.

Going to a more abstract level skeletons can be generalized practically to any form
(or combination of forms) and size. This is indeed the key feature of the coordination
language ASSIST (62; 63) that is an evolution of SKIE. ASSIST is made of a graph
whose nodes are parallel (parmod) and sequential (seqmod) modules. The arches of the
graph represent streams of data. Interaction among parmods can occur also via shared
objects (data, memory regions, functions, etc.) for which ASSIST provides a primitive
access mechanism by implementing or emulating a shared memory access. Non primitive
accesses are instead provided for external objects (like DSM libraries, CORBA servers,
etc.) for which the user has to take care of the access, synchronyzation and consistency
via directives to be inserted in the code. Activities in different parmods can be parallel
or concurrent (like, for example, in a pipeline). Parallel or concurrent activities can take
place also within the same parmod. They can be either farm-like or data-parallel-like (or
mixed in a non-deterministic way depending on the structure of the data and the status of
the computation). This means that ASSIST allows the following two hierarchical levels:
among various parmods and within the same parmod. The first level describes a graph
of the data flow type while the second can describe computations both of a data parallel
domain decomposition type and of a functional replication farm type. ASSIST is also
scarcely invasive since the computation is described using a set of procedures wrapping
the sequential user code and organized in the parallel fashion specified by the used parmod
type.

ASSIST has been already used to parallelize time dependent reactive scattering ap-
plications. Applications implemented using ASSIST and its libraries (see ref. (64)) have
shown to clearly outperform their versions implemented using MPI. Similar studies have
been carried out for time independent applications separately for the surface functions
calculations and the propagation along the reaction coordinates. Tests performed using
MPI on an eigenvalue finding routine are illustrated in ref. (65)

5.2 Virtual organizations and Grid enabled applications

Moving to realistic simulations of complex chemical systems, however, parallelism on a
single (no matter how powerful) machine is still insufficient. As a matter of fact, the
emerging computing paradigm is the computing Grid (66; 67). The Grid offers the pos-
sibility of solving complex problems using a (preferably very large) set of distributed
computers as a single unified computing resource. To this end the Grids enable the shar-
ing, selection, and aggregation of a wide variety of geographically dispersed resources
ranging from PCs to supercomputers, storage systems, data sources and specialized de-
vices. These may be owned by different organizations and work for completely different
purposes within the virtual organization. Accordingly a Grid can be viewed as a seamless
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integrated computational platform.

Moreover, the Grid is by definition at the same time both a collaborative environment
and a market in which the users interact to find a solution for their problems and/or to offer
their solutions to other users. Just to mention a few services which can be ”traded” on the
Grid we can list: Computational services, Data services, Application services, Information
services and Knowledge services. This makes Grid applications intrinsically large scale
and multidisciplinary. Obviously, in order to make the Grid computing effective, a large
number of tools concerning security, resource allocation, costs management, information
flux, software development, process execution, resource aggregation and scheduling need
to be implemented. As a matter of fact the Grid is able to use in a synergistic way
resources of all kinds including those which cannot be physically replicated in a single
site. This means that one can easily scale up computing cycles as well as competences
regardless of their location to work in a coordinated fashion. In summary, the Grid is a
virtual place for composition of multiple administrative domains and autonomies to work
concertedly on a large variety of heteregenous machines and problems which naturally
scales up from a few integrated resources to very many of them a smooth, dynamic,
adaptable and interoperable way.

The European Grid of election is the already mentioned EGEE (68). Within EGEE
a memorandum of understanding has been signed last March with the COMPCHEM vir-
tual organization to foster the development of molecular science complex simulations. The
mapping of a complex application on the computing grid is, indeed, a difficult task. Such
a process is not simple because there is not a unique correspondence between the variation
of physical and mathematical parameters of a complex computational application and the
distribution on the grid of the computing blocks. This is not only due to the fact that
a variation of the computational parameters alters the relative importance of the various
computational blocks and of the related demand of computational resources but also to
the fact that the support of the grid infrastructure at run time is not deterministic (69).
For this reason it is vital to work out data graphs and build workflow managers allowing
a proper independent handling of the computing blocks at various levels of distribution.
The first step of this process is, therefore, the breaking of the computational procedure
into independent or loosely coupled computing blocks. In fact, the singling out of inde-
pendent (or almost independent) computational tasks is propedeutic to the design of any
concurrent organization of the relevant computer programs.

5.3 The Grid implementation of a molecular science simulator

The particular Grid enabled application considered as a study case by COMPCHEM is,
as it has been already mentioned, GEMS the Grid Enabled Molecular Simulator. A demo
version of GEMS (GEMS.0) has been already implemented on the production Grid of
EGEE and presented at the first EGEE review workshop (70). GEMS.0 is derived from
the SIMBEX simulator (see ref. (1)) developed by the homonimous working group of the
COST Chemistry Action D23 (Metalaboratories for complex computational applications
in Chemistry) (71). It takes care of evaluating the cross sections and the product distri-
butions (plus some non observable quantities) of a crossed molecular beam atom-diatom
experiment using a quasiclassical approach. In a quasiclassical approach, the observable
properties of a scattering experiment are determined by performing a multidimensional
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integral over the unselected variables of the experiment. The kernel of the integral is
given by a boolean function whose value depends on the result of the integration of the
Hamilton equations of the molecular system.

This means that one has to integrate large batches (say Ntj) of classical trajectories
for which some of the initial conditions are randomly selected. The calculation of each
individual trajectory implies the integration of the equations of motion of the Nnucl atoms
composing the system. This means that the simulation has to generate, possibly in a
deterministic way, a large number of subsets of pseudorandom numbers (with each subset
determining the initial conditions of a given trajectory). The overall workflow of GEMS.0
is, therefore, articulated into:

1. a first part defining the parameters of the calculation, computing quantities of gen-
eral use and assembling the information needed for the calculation of the potential,

2. a final part performing the averaging of the calculated quantities and carrying out
the graphical elaboration of the properties to be rendered possibly in real time on
the virtual monitors,

3. a central (the key) part iterating over the distribution to the workers of the trajec-
tories to be integrated and to the recollection of the related results to update the
reactive probability.

The central part of GEMS.0 is the kernel of the calculation that can be efficiently dis-
tributed on the Grid using a task-farm scheme. The distribution can take place by as-
signing the integration of individual (or blocks of) trajectories to the worker nodes after
generating initialseed (the first seed of the subset needed by each trajectory or subset
of trajectories) at Master process level. In GEMS.0, in order to keep the generation of
initialseed as much deterministic as possible, it has been chosen to perform the iterat on
the individual trajectories. Accordingly, to integrate Ntj trajectories on a Grid made of
Nnode nodes (Nnode is assumed to be smaller than Ntj) the Master process (see Fig. 1)
generates and SENDS out, for the first Nnode iterations, the initial seed of each trajec-
tory without waiting for the result of the integration to be returned. For the subsequent
iterations the initialseed of each trajectory is sent out only after one of the worker nodes
(anynode) has sent back its result. After the sending to the worker nodes of initialseed for
the Ntj trajectories is completed the Master process still needs to iterate over the Nnode

nodes to collect the results of the remaining trajectories and send a conventional signal
(we chose to adopt for this purpose a negative value of the initial seed) to stop the work
at worker process level.

As sketched in Fig. 2 the worker process devoted to the integration of each individual
trajectory receives at the beginning (once for ever) the general information. Then it
iterates on receiving initialseed of the subset necessary to generate the trajectory initial
conditions. After receiving the trajectory initial seed the worker process, if the seed is
not negative, generates the remaining pseudorandom numbers of the needed subset to
work out either at random (fully or partially according to the chosen distribution) or the
specific initial value of the parameters of the trajectory like Etr, J , the velocity orientation,
the diatomic internuclear distance, orientation and position as well as its vibrotational
(vj) quantum state. The iteration on time then starts to integrate the trajectory from
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Read input data: v, j, Etr, ∆to, error, maxstep, Ntj ...
Perform preliminary calculations
BROADCAST to the worker nodes the needed general information
Generate initialseed for the first trajectory
inode=0
Do itj = 1, Ntj

inode=inode+1
Generate next initialseed of the of the pseudorandom series
IF inode > Nnode THEN

RECEIVE from anynode the result and update Pvj,v′j′

SEND the initialseed to anynode

ELSE SEND the initialseed to inode

ENDIF
EndDo itj
Do inode = 1, Nnode

RECEIVE from anynode the result and updated Pvj,v′j′

SEND to anynode a negative seed to stop activities
EndDo inode

Figure 1: Pseudocode of the trajectory Master program.

an atom-diatom distance large enough to consider the system in its asymptotic reactant
arrangement. The integration is eventually terminated either when one of the atom-
atom distances has reached a value large enough to consider again the arrangement as
asymptotic or when the maximum number of integration steps (maxstep) has been reached.
If at the integration end point the system has reached the product asymptote the P J

vj,v′j′

probability of the product diatom vibrotational (v′j′) quantum state closest in energy to
the computed classical value is updated.

In GEMS.0 the PES is assumed to be of the LEPS type and the value of its parameters
to be available from a library (they may have been already calculated using two other
computational procedures, SUPSIM and FITTING, implemented in our Laboratory (72;
73)). The integration of a trajectory can be disposed to any computing node of the grid
while the integration outcome is accumulated by the master process sketched in Fig. 1 by
updating the value of the related quasiclassical probability Pvj,v′j′ which can be displayed
to the user on a virtual monitor.

Test runs of GEMS.0 (70) performed as EGEE (68) demonstrations have shown that
the simulator is highly suitable for a distribution on the heterogenous networked envi-
ronment of the Grid. In these runs from several thousands to millions or even billions of
trajectories (to this end particular attention has to be paid to the generation of the pseu-
dorandom sequence) can be run depending on how much the considered event is likely
to occur. The main feature of GEMS.0 is that of being cpu bound (this is in general
true even for systems larger than atom diatom ones). The implementation of GEMS.0
has impacted EGEE in two ways. The first of them is related to the specific requests of
GEMS.0 in terms of infrastructure, middleware and services. The second is related to the
characteristics that molecular simulations need to possess in order to be suitable for Grid
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RECEIVE from the master node the needed general information
[∗] RECEIVE the trajectory initialseed
IF seed < 0 STOP
Generate the needed subset of pseudorandom numbers
Calculate initial values of the integration variables
t = 0
tstep = ∆to
Do it = 1, maxstep

t = t+ tstep
Perform the time step integration
IF Energy and total angular momentum are conserved THEN

IF an asymptotic arrangement has been reached THEN
perform the asymptotic analysis
SEND results to Master
GOTO [∗]

ENDIF
ELSE t = t− tstep and reduce tstep
ENDIF

ENDDO it
GOTO [∗]

Figure 2: Pseudocode of the trajectory worker program.

implementation.
As to the first item it has become apparent that molecular simulations force the Grid

to better exploit various levels of parallelization and distribution using an appropriate
workflow computational procedures of different nature and origin. In other words, GEMS
requests EGEE to focus more on an effective coordination of brainware and knowledge.

As to the second item it has also become apparent that EGEE prefers direct calcula-
tions (with respect to data transfers) and coarse grain granularity schemes.
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